Emmaville Primary School

A Whole-School
Approach to Mental and Written Calculations

A Guide for Teachers and Parents

Nursery and Reception - The Foundation Stage

Nursery and Reception are organised to promote social skills and develop understanding of mathematics through games, rhymes, songs, stories, construction, imaginative play, outdoor play, cooking, shopping, music and art, exploring patterns and number in our environment and of course daily routines.

Many routines and activities at home have potential for developing children's mathematical understanding. A question or a comment that is offered during play activities or daily routines can help children see the mathematics they are using and challenge them to think mathematically.

The following ideas are starting points for you to dip into, experiment with and build on.

Theme	Questions/Ideas	Mathematics
Money and Shopping	How much do you think will be in here? Let's count it and see...	Prediction based on experience
	What's this coin? What's this one? Which is worth more? So why is this one smaller?	Recognition of coins
	What coin do you think we've got most of? Make piles of coins (same value) Children will often think the tallest tower has the larger amount of coins as they will disregard the thickness of the coins	Prediction
	When counting, ask your child to watch carefully, and only count when a coin is picked up or placed down. This helps children match a number name to an object when counting	Counting and one-toone matching
	How much is this? Too much? Too little? How much change do we need?	Calculation and solving problems
	Collect small amounts of money in a piggy bank, tin, or play till. Children can keep a record of how many of each coin they have (start with just 1p and 2p coins)	Recognition of coins Counting Checking
The Order of the Day	What do you do first when you get to school? (eg. Taking coats off, going to the toilet, drawing/painting, washing hands, looking at books) Can you be more detailed? (eg. Open the door, hang my bag up, go to the toilet, wash my hands, sit in the book corner...)	Order Sequence of events
	Link above to any home routines...In a few minutes we have to do something else. What do you think we're going to do next? Are you sure? How do you know? What happens after that?	Prediction based on experience Justification
Dates, the Calendar and the Weather	What day of the week is it? What day was it yesterday? What day will it be tomorrow? How many days until....? How many days in a week? How did you know? Are there always seven days in a week, four weeks in a month, twelve months in a year? What's the number in the date today? Try writing it in the air, on your hand, on the carpet, on someone's back...	The structure of days, weeks and months, passage of time Writing numerals
	Draw a simple chart so that your child can record the weather over a seven day period. A piece of paper with the days of the week written along the bottom or down the left hand side can be used. Your child can then draw a picture or pictures next to each day to show what the weather is like e.g. sun, cloud	Using a chart Using symbols

Theme	Questions/Ideas	Mathematics
Birthdays	How old are you? How old were you last year? How old will you be on your next birthday?	Passage of time
	How old is your sister/brother/friend? Can you ever be older/younger than them? Why?	Mathematical reasoning
	Count the number of candles on a cake during a birthday party. Ask the children to clap the same number of times	Counting
News Time	Show your child an item such as a doll, toy car or an interesting picture. After a short time hide the item and ask your child some simple questions about what they might have noticed, e.g. what colour were the eyes? How many wheels were there? What number was on the bus? What was under the table? Some children find this quite difficult. As a lead into the above activity, it is sometimes better to talk to your child about the item before hiding it from view.	Counting Observing and remembering numbers, shapes and colours Using mathematical language Searching for properties
Getting Changed	How long does it take you to get dressed for school? How long does it take you to get ready for bed?	Timing (in minutes or counting
Helping at Home	Let your child help you to prepare for a meal or a party. How many cups? How many plates? How many sandwiches if everyone has two? Mixing soft drinks e.g. one part squash to 5 parts water	Calculating and checking
	Sorting the washing into colours and whites How many of each? How many scoops of washing powder/how many tablets?	Separate a given number of objects into groups Counting
	Ask your child to help you put away the weekly shopping. What goes in the fridge, which shelf? Where does the washing powder go? What about the bread? Can the items be stored neatly?	Mathematical language (position, size, shape) Counting
In the Street	Encourage your child to look for and say numbers around them, e.g. on houses, shops, buses, car number plates, lifts, speed signs Look for situations where you can encourage your child to count, e.g. Up and down steps, the number of red cars, the number of dogs you see on your trip Encourage your child to look for, and name, shapes they see around them e.g. road signs, on buildings	Recognise and name numerals Counting Recognising and naming shapes
Games	Games can be both fun and educational. For example, hopscotch, skittles or snakes and ladders provide opportunities for children to count and calculate	

Recording calculation in Reception

It is important to emphasise that recording numerals in Reception is only an objective in term 3. Prior to this the emphasis is on recognising and ordering numerals. Teachers do need to model simple addition and subtraction using formal notation, including use of operation and equals symbols. Children
should be encouraged to use their own pictorial recording to represent quantities and the results of simple calculations.

When children are ready to use numerals the following are possible ways to record simple calculations:

Using number tracks

$$
5+1=\square
$$

Adding one

Year One
Addition
$5+3=8$
$(* * *=8$

Mental Calculation Strategies (+ and -) Recording Method

- Use knowledge that addition can be done in any order
- Begin to partition into 5 and a bit when adding $6,7,8$ or 9 , then recombine
- Find a small difference by counting up

$$
\begin{aligned}
6+7 & =6+6+1 \\
& =12+1 \\
& =13 \\
6+7 & =12+1
\end{aligned}
$$

- Add 9 to single digit numbers by adding 10 then subtracting 1

$$
\begin{aligned}
& 7+9=7+10-1 \\
& 17-1=16 \quad \text { or..... }
\end{aligned}
$$

(Using number line to record)

- Begin to bridge through 10 , and later 20, when adding a single digit number
- Use known number facts and place value to add or subtract a pair of numbers mentally

$$
\begin{aligned}
6+7 & =6+4+3 \\
& =10+3 \\
& =13 \quad \text { or... }
\end{aligned}
$$

$$
\begin{array}{ll}
2+3=? & 2+?=5 \\
?+3=5 & 7-3= \\
7-?=4 & ?-4=3
\end{array}
$$

Add or subtract a single digit to or from a teens number without crossing 10s boundary:

$$
\begin{aligned}
& 14+3,16+4,17-6 \text { etc. } \\
& 15+4=?, \quad 15+?=19 \text { etc. }
\end{aligned}
$$

Begin to add a teens number to a teens number without crossing the 10s boundary:

$$
\begin{aligned}
& 14+12,17+12,13+15 \text { etc. } \\
& 14+13=?, \quad 14+?=27 \text { etc. }
\end{aligned}
$$

Year Two

Mental Calculation Strategies (+ and -)

- Use knowledge that addition can be done in any order to do mental

For example, putting the larger number first and counting on: calculations more efficiently

$$
5+38=38+5 \text { (count on } 5 \text { to get to } 43 \text {) }
$$

Or use knowledge of 'bonds' to 10 to count on in steps:

$$
\begin{aligned}
6+28 & =6+4+24 \\
& =10+24 \\
& =34
\end{aligned}
$$

Use knowledge of bonds to 10 to add Three numbers:
$3+8+7=10+8=18$

Partition numbers into tens and units:

$$
\begin{aligned}
14+25 & =(10+20) \text { plus }(4+5) \\
& =30+9 \\
& =39
\end{aligned}
$$

- Find a small difference by counting up from the smaller to the larger number

43-38 (children could record this using a blank number line)

- Identify near doubles, using doubles already known

$$
\begin{aligned}
8+9 & =16+1 \\
& =17 \\
18+19 & =36+1 \\
& =37
\end{aligned}
$$

- Add or subtract 9 or 11 by adding or subtracting 10, then adjusting

$$
\begin{array}{rlrl}
23+9 & =33-1 & 23-9 & =13+1 \\
& =32 & & =14
\end{array}
$$ Begin to add/subtract 19 or 21

43-19

- Use patterns of similar calculations

$$
\begin{array}{ll}
4+6=10 & 7-4=3 \\
14+6=20 & 17-4=13 \\
24+6=30 & 27-4=23
\end{array}
$$

and therefore realise that:

$$
74+6=80 \quad 77-4=73
$$

Similarly, recognise and use patterns:

$$
\begin{gathered}
5+4=9 \\
50+40=90 \\
500+400=900
\end{gathered}
$$

- State the subtraction corresponding to a given addition, and vice versa

$$
13+5=18 \text { therefore } 18-5
$$

- Use known number facts and place value to add/subtract mentally

Answer oral questions such as:

$$
35+4 \quad 88-5
$$

Complete written questions such as:

$$
\begin{array}{ll}
43+6=? & 45+?=48 \\
67-4=? & ?-7=82
\end{array}
$$

- Bridge through 10 or 20, then adjust

$$
16+7=16+4+3
$$

Mental Calculation Strategies (x and \div)

- Use known number facts and place value to carry out mentally simple multiplications and divisions

Multiply a single digit number by 1 or 10
$8 \times 1=? \quad 1 \times ?=70$ $6 ? 10=60 \quad 50=? \times 10$

Divide a two-digit multiple of 10 by 1 or 10 $7 \div 1=? \quad 60 \div ?=6$

Begin to double any multiple of 5 up to 50 $30 \times 2=? \quad ? \times 2=70$

Begin to halve any multiple of 10 to 100

$$
50 \div 2=? \quad ? \div 2=15
$$

Multiply a single digit number up to 5 by 2, 3, 4 and 5

$$
7 \times 2=? \quad 3 \times ?=12
$$

Understanding Multiplication and Division

Multiplication and division are introduced in year two and teachers use visual models to help children understand how multiplication and division work. Children are taught that multiplication is essentially repeated addition and division is repeated subtraction. At the same time children will be practising
counting forwards and backwards in steps (multiples) and learning multiplication facts from the 2 and 10 times tables. Later in year two pupils will begin to learn facts from the 5 times table.

Dot pattern grids help children understand the relationship between multiplication and division. Seeing numbers set out as rectangular patterns of dots can help children develop an understanding of repeated addition and division as subtraction of groups.

Seeing multiplication and division in this visual way will help children develop a better understanding which will enable them to deal with much more complex calculations in Key Stage 2.

Using a number line is also a very effective way of helping children understand multiplication and division. Children are taught that one way of thinking about multiplication is to see it as lots of repeated addition.
$6 \times 3=18$ can be represented on a number line as six jumps of 3 and can also be shown that three jumps of six will give the same answer:

Similarly, $15 \div 3$ can also be represented as repeated subtraction:

'Sharing' and 'Grouping'

Sharing

If I share 12 sweets between 4 children, how many will they

Grouping

Year Three

Mental Calculation Strategies (+ and -)

- Use knowledge that addition can be done in any order to do mental calculations more efficiently

Put the larger number first and count on

$$
7+118
$$

Count on in ones from 118 or bridge through 10 by adding 2 then 5

$$
30+64
$$

Count on in tens from 64

Add several numbers by using strategies Such as these:

$$
\underbrace{17+6+3+5}_{20}
$$

$$
\begin{aligned}
18+5+3+4 & =18+9+3 \\
& =28+2 \\
& =30
\end{aligned}
$$

Partition and recombine

$$
\begin{aligned}
65+23 & =80+8 \\
& =88 \quad \text { or.... }
\end{aligned}
$$

- Find a small difference by counting up from the smaller to the larger number

This strategy is a good one to use when the two numbers are close together, i.e. 73-68

$$
68 \xrightarrow{+2} 70 \xrightarrow{+3(+5)} 73
$$

- Identify near doubles, using doubles already known

$$
\begin{aligned}
& 45+46=90+1 \\
& 70+80=140+10=150 \\
& 17+15=30+2=32
\end{aligned}
$$

- Add and subtract mentally a 'near multiple of 10 ' to or from a two digit number

$$
\begin{aligned}
64+29 & =94-1=93 \\
73-19 & =53+1=54 \quad \text { or... }
\end{aligned}
$$

- Use patterns of similar Calculations

Identify and develop patterns such as:

$$
\begin{array}{ll}
15+4=19 & 57-4=53 \\
15+14=29 & 57-14=43 \\
15+24=39 & 57-24=33
\end{array}
$$

$$
3+5=8
$$

$$
30+50=80
$$

$$
300+500=800
$$

- Say or write a subtraction statement corresponding to a given addition statement and vice versa
- Use known number facts and
$67+28=95$ therefore $95-28=67$

$$
95-67=28
$$

$86-37=49$ therefore $49+37=86$
Add or subtract a single digit number to or
place value to add/subtract mentally
from any three-digit number without crossing the tens boundary

$$
567+3 \quad 644+5 \quad 783+6
$$

complete questions such as:

$$
\begin{array}{ll}
608+?=610 & 564+?=569 \\
?-7=872 & 768-?=761
\end{array}
$$

Add a two-digit number to any three digit multiple of 10

$$
300+67 \quad 400+38
$$

Subtract a single digit number from any three-digit multiple of 10

$$
500-7 \quad 600-9 \quad 300-4
$$

Add a two-digit number to a multiple of 10 , crossing 100

$$
70+34 \quad 60+56 \quad 70+88
$$

Add or subtract a pair of two-digit numbers without either 10 or 100

$$
45+33 \quad 62+44 \quad 23+66
$$

- Bridge through a multiple of 10, Then adjust

$$
58+7=58+2+5=60+5=65
$$

then refine..

$$
58+7=60+5=65
$$

Find a small difference between a pair of numbers that are either side of a multiple of 100

$$
605-598 \rightarrow 598 \rightarrow 600 \rightarrow 605
$$

This uses counting on from the smaller Number - "shopkeeper method"

Begin to add or subtract any pair of two-

$$
\begin{aligned}
27+44 & =20+40+7+4 \\
& =60+11 \\
& =71 \text { or.... } \\
27+44 & =30+41=71 \quad \text { or.... } \\
27+44 & =30+44-3
\end{aligned}
$$

Pencil and paper methods (+ and -)

- Use informal pencil and paper methods to support, record and/or explain + and calculations

Informal jottings can be used as a way of recording and explaining mental methods. Because these jottings illustrate the mental strategies the children are using, they will help pupils remember particular strategies

Counting on in steps of 100,10 or 1 :

$$
86+37=86+30+7=116+7=123
$$

$$
\begin{aligned}
247+438 & =247+400+30+8 & & \text {..and below, the } 8 \text { has been split into a } 3 \\
& =647+30+8 & & \text { and } 5 \text { for the same reason. } \\
& =677+8 & & \\
& =685 & &
\end{aligned}
$$

Counting up from the smaller to the larger number when subtracting:

$$
73-55 \longrightarrow 55 \div 50 \xrightarrow{+10} 70 \stackrel{+3}{73}{ }^{\text {answer: } 18}
$$

$$
454-237 \longrightarrow 237 \xrightarrow{+3} 240 \xrightarrow{+200} 440 \xrightarrow{+14} 454 \text { answer: } 217
$$

Compensation - taking away too much, then adjusting:
$435-297=(435-300)+3$

Some children may be ready for vertical layouts by term 3:

Vertical Layouts for Addition and Subtraction

When children can add or subtract any pair of two-digit numbers, recall all their bonds to 20 and partition three-digit numbers, they are ready for vertical calculation methods. However, the first vertical methods are what we call expanded methods and they do not involve 'carrying' figures. The idea behind this is that pupils can complete each stage of an expanded method mentally; they are simply arranging each stage vertically instead of horizontally.

Addition

68		68
+23	or.....	$+\underline{23}$
80		11
11		80
91		91
127	or....	127
(74 +100		+ 74
100		11
90		90
11		100
201		201

Subtraction

Counting on method	Compensation method
673 673 -285 $-\frac{285}{373}$ 50 (to 290) $\underline{+15}$ 300 (to 600) 388 $\frac{73}{388}$ (to 673) .	

Decomposition

$$
\begin{array}{r}
72=70+2=60+12 \\
-46 \quad 40+6 \\
\frac{40+6}{20+6}=26
\end{array}
$$

Mental calculation strategies (x and -)

- Multiply by 10 and 100 by shifting digits one/two places to the left

Develop patterns such as:

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
10 & 20 & 30 & 40 & 50 & 60 & 70 \\
100 & 200 & 300 & 400 & 500 & 600 & 700
\end{array}
$$

300	400	500	600	700	800
30	40	50	60	70	80
3	4	5	6	7	8

- Use doubling or halving
- Say or write a division statement corresponding to a given multiplication statement

Work out 4 times table facts quickly by doubling facts from the 2 times table:
$8 \times 2=16$ therefore $8 \times 4=32$

If $1 \times 24=24$ then double 24 (48)
Must be 2×24.
If $2 \times 24=48,96=4 \times 24$ and so on.

Find quarters by finding a half of a half:
$\frac{1}{4}$ of $24=\frac{1}{2}$ of $12=6$ $\frac{1}{4}$ of $180=\frac{1}{2}$ of $90=45$

$$
\begin{array}{ll}
8 \times 5=40 & 40 \div 5=8 \\
& 40 \div 8=5
\end{array}
$$

Using numbers such as 2,5 and 10 , write or say different multiplication or division 'sentences' i.e.
$10 \div 5=2,5 \times 2=10 \ldots$

- Use known number facts and place value to carry out mentally simple multiplications and divisions

Multiply a single digit by 1,10 or 100
$8 \times 10 \quad 9 \times 100 \quad 7 \times ?=70$
$60 \times ?=60 ? \times 10=50$

Divide a three-digit multiple of 100 by
10 or 100
$600 \div 10=? \quad 400 \div ?=4$

Double any multiple of 5 up to 50
$25 \longrightarrow 50$

Halve any multiple of 10 to 100
$70 \longrightarrow 35$
$90 \longrightarrow 45$
$30 \longrightarrow 15$

Multiply a two-digit multiple of 10 up to 50 by $2,3,4$, 5 or 10
Respond orally to questions such as:
$30 \times 3 \quad 50 \times 4 \quad 40 \times 5$
Answer written questions such as:
$50 \times 2=? \quad 30 \times ?=150$
$? \times 10=400 \quad 20 \times ?=80$

Multiply a two-digit number by 2, 3, 4 or 5 without crossing the tens boundary

$$
22 \times 3=? \quad 42 \times ?=168
$$

$$
28=14 \times ? ? \times 5=125
$$

Year Four

Mental calculation strategies (+ and -)

- Find a small difference by counting $83-79 \rightarrow 79+1(80) \rightarrow+3(83)$ Up $3002-2993$ is $7+2=9$
- Count on or back in steps of 1,10 Or 100

For example, work out mentally:
1006-8 (count back in ones from 1006)
$567+40$ (count on in tens from 567)
382 - 50 (count back in tens from 382)
$240+600$ (count on in hundreds...)

- Partition into tens and units, adding the tens first

$$
\begin{aligned}
& 34+57=30+50+4+7 \\
&=80+11 \\
&=91 \quad \text { or... } \\
& 34+57=80+11=91 \text { or.. } \\
& 34+57 \\
& 30+4+50+7
\end{aligned}
$$

- Identify near doubles using known
$29+28=60-3=57$ doubles
$38+36=80-6=74$
$370+380=800-50=750$
- Add or subtract the nearest multiple of 10 , then adjust
$54+28=84-2=82$
$73-27=43+3=46$ or....

- Continue to use the relationship between

If you know that:
$47+18=65$
addition and subtraction

- Add 3 or 4 small numbers finding pairs that total 10, 9 or 11...

Add three two-digit multiples

 of 10- Use known number facts and place value to add or subtract any pair of two-digit whole numbers
then you also know that:
$18+47=65$
$65-47=18 \quad 65-18=47$
$4+7+9+1=11+10=21$
$3+8+9+5=11+10+4=25$
$5+7+8+3=10+10+3=23$
$30+50+40=90+30=120$ or.
$30+50+40=100+20=120$

Continue to add or subtract two-digit
multiples of 10
$40+80 \quad 140-70$
$70+?=120 \quad ?-40=130$

Add or subtract a pair of multiples of 100, Revise adding/subtracting a multiple of crossing 1000

10 to/from a two-digit or three-digit number without crossing the hundreds

$$
400+800 \quad 1300-600
$$

boundary

$$
300+800=? \quad ?-400=1700
$$

$43+50 \quad 564-50 \quad 62+?=92$
$76-?=16 \quad ?+40=593$

Revise adding a two or three-digit number to a multiple of 10,100 or 1000
$60+34 \quad 300+107 \quad 2000+532$
$360+?=386 \quad ?+56=266$
Find what to add to a two or three-digit number to make 100 or the next higher multiple of 100
$47+?=100 \quad ?+38=100$
$245+?=300 ?+37=200$

Find what to add to a four-digit multiple of Add a single digit to any three or four-

100 to make the next higher multiple of 1000
$2800+?=3000 \quad ?+700=9000$
digit number, crossing the tens boundary
$587+7 \quad 678+5$
$583+?=591 \quad ?+6=374$

Subtract a single digit from a multiple of 100 or 1000
800-8 4000-6
$700-5=? \quad 400-?=392$

Subtract a single digit from a three or four-digit number, crossing the tens boundary
514-7 2036-8
$422-7=$? $302-$? = 295
$2104-$? $=2097$? $-6=1329$

Find a small difference between a pair of numbers lying either side of a multiple of 1000
8004-7997 2001-1993
$4011-3998=? 2004-?=13$

Add or subtract any pair of two-digit numbers, including crossing the tens boundary
56+38 84-27
$34+68=? \quad 73-?=29$

$34+68=90+12=102$

Pencil and paper methods (+ and -)

- Use informal pencil and paper methods to support, record or explain additions and subtractions.
Develop and refine written methods for: column addition/subtraction of two whole numbers less than 1000, and addition of more than two such numbers.

Informal written methods

Addition

Adding the most significant digits first

476	685	419	345
$\begin{array}{r}\text { a } \\ +\quad 57 \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 38 \\ \hline 600\end{array}$	+ 86	+136
400	600	400	400
120	110	90	70
13	13	15	11
533	723	505	481

Compensation method
658

$+\quad 87$
$758(658+100)$

$-\frac{13}{745}$ (take 13 away because we've added 13 too many)

Subtraction

Standard written methods

Addition

Adding the least significant digits, introducing 'carrying' figures

400
521

Subtraction

Decomposition

$$
\begin{aligned}
& 753=700+50+3 \text { leading to } \ldots \text {. } \\
& -76 \quad-\quad 70+6 \\
& =\begin{array}{rr}
700+40+13 \\
-70+6 \\
\hline
\end{array} \begin{array}{r}
743 \\
-\quad 76 \\
\hline
\end{array} \\
& =600+140+13 \\
& \begin{array}{l}
-70+6 \\
\hline 600+70+7=677 \quad-76 \\
\hline 677
\end{array}
\end{aligned}
$$

Decimals

Many children will need to use informal methods for adding and subtracting decimals - even in contexts such as money. Methods learnt in year 3 using the blank number line may be more helpful until children are secure in their understanding of the value of digits in decimal numbers.

£7.64-£3.86

Mental calculation strategies (x and \div)

- Use doubling or halving starting from known facts, e.g. to multiply by 4 , double and double again, to multiply by 5 , multiply by 10 and then halve.
$12 \times 4=24 \times 2=48$
$12 \times 5=120 \div 2=60$
$13 \times 20=130 \times 2=260$
$64 \div 4=32 \div 2=16$
$120 \div 5=12 \times 2=24$
Work out multiples of 15 by doubling:
$1 \times 15=15$
$2 \times 15=30$
$4 \times 15=60$
$8 \times 15=120$
$16 \times 15=240$
$32 \times 15=480 \ldots$ and use combinations to work out..
$13 \times 15=120+60+15=195$
$17 \times 15=240+15=255$
$1 / 4$ of $120 \xrightarrow{1 / 2} 60 \xrightarrow{1 / 2} 30$

- Use closely related facts (e.g. to multiply by 9 or 11 , multiply by 10 and adjust; develop the $\times 6$ table from the $x 4$ and $\times 2$ tables)
$16 \times 11=160+16=176$
$16 \times 9=160-16=144$
$7 \times 6=(7 \times 4)+(7 \times 2)$
$=28+14$
$=42$
- Partition
- Use the relationship between multiplication and division
- Use known number facts and place value to multiply and divide whole numbers, including by 10 and then by 100 (whole number answers)

$$
\begin{aligned}
23 \times 3 & =(20 \times 3)+(3 \times 3) \\
& =60+9 \\
& =69
\end{aligned}
$$

$117 \times 3=300+30+21=351$
$13 \times 8=104$ therefore...
$8 \times 13=104$
$104 \div 8=13$
$104 \div 13=8$

Multiply a two or three-digit number
by 10 or 100
$234 \times 10 \quad 47 \times 100$
$76 \times 100=? \quad 670 \times ?=6700$

Divide a four-digit multiple of 1000 by 10 or 100
$6000 \div 100 \quad 8000 \div 10$
$7000 \div ?=70 \quad ? \div 100=50$
Double any multiple of 5 up to 100 $35 \times 2=$? ? $\times 2=170$

Halve any multiple of 10 to 200 $130 \div 2=? \quad ? \div 2=75$

Practise multiplying a two-digit multiple of 10 by $2,3,4,5$, or 10 and begin to multiply by $6,7,8$ or 9 $30 \times 3 \quad 50 \times 4 \quad 20 \times 10$ $80 \times ?=160 \quad ? \times 4=120$ $60=10 \times ? \quad 140=? \times 4$

Pencil and paper methods (x and \div)

- Approximate first. Use informal pencil and paper methods to support, record or explain multiplications and divisions. develop and refine written methods for $T U \times U, T U \div U$

Informal written methods

Multiplication

The grid method - TU $\times U$
33×6 is approximately $30 \times 6=180$

26×7 is approximately $25 \times 7=175$

Division

Using multiples of the divisor - TU $\div U$
$83 \div 5=(50+30+3) \div 5$
$=10+6$ remainder 3
$=16$ remainder 3
Standard written methods
Short multiplication

26
$\times \quad 7$
140
42
---:
$\times \quad 7$
182

Short division

$87 \div 6$
6) 87
$\begin{array}{r}-60 \\ \hline 27\end{array}$
(10 x 6)
$-\frac{24}{3}(4 \times 6)$

Answer: 14 remainder 3

Year Five

Mental Calculation Strategies (+ and -)

- Find differences by counting up 7004-3448 through next multiple of 10,100 or 1000

$$
\begin{array}{r}
3448+52(3500) \\
+\quad 500(4000) \\
+3004(7004)
\end{array}
$$

- Partition into HTU, adding the most significant digits first

$$
\begin{aligned}
436+58 & =400+30+50+6+8 \\
& =480+14 \\
& =494 \\
327-64 & =327-60-4 \\
& =267-4 \\
& =263
\end{aligned}
$$

- Identify near doubles, such as
$1.5+1.6=3+0.1=3.1$ $1.5+1.6$
- Add or subtract the nearest Multiple of 10 or 100, then adjust

Add/subtract 9, 19, 29... or 11, 21 etc., by adding/subtracting $10,20,30$..then adjusting
$367+39=407-1=406$ $273-19=253+1=254$

- Develop further the relationship
$146+117=263$, therefore....
Between addition and subtraction
$263-146=117$
$263-117=146$
Work out a calculation such as, $13.6+8.7$ or $10.5-4.8$ and then write or state three other related facts
- Add several numbers (four or
$6+9+7+8+3$
five single digits, or multiples of 10)
$30+60+50$
- Use known number facts and Place value for mental addition And subtraction

Add or subtract three-digit multiples of 10
$480+370 \quad 650-280$ and explain method

Add three or more three-digit multiples Of 100
$300+500+400$
$200+?+600=1100$

Add/subtract a multiple of 100 to/from a three or four-digit number, crossing 1000
$476+700 \quad 1763-800$
$500+?=1744 \quad ?+355=1255$
and explain method

Continue to find what to add to a threedigit number to make the next higher multiple of 100
What must be added to 346 to make 400?
$348+?=400 \quad ?+37=600$

Find what to add to a decimal with units and tenths to make the next higher whole number
What must be added to 4.7 to make 5? $3.4+?=4 \quad ?+0.2=7$

Find the difference between a pair of numbers lying either side of a multiple of 1000
$4004-3897=107$ - count up from 3897.
$+3 \quad+104$
$3897 \rightarrow 3900 \longrightarrow 4004$

Add or subtract a pair of decimal fractions each with units and tenths, or with tenths and hundredths, including crossing the units boundary or the tenths boundary
$4.3+7.8 \quad 5.3-2.8$
$5.7+?=10.4 \quad ?-3.6=3.5$
$0.55+0.72=$?

Pencil and Paper Methods (+ and -)

- Use informal pencil and paper methods to support, record and explain additions and subtractions. Extend written methods to: column addition/subtraction of two whole numbers less than 10000 ; addition of more than two whole numbers less than 10000 ; addition or subtraction of a pair of decimal fractions, both with one or both with two decimal places

Informal Written Methods

Addition

Adding significant digits first
$\left.\begin{array}{r}\begin{array}{r}478 \\ +366 \\ 700 \\ 130 \\ 14\end{array} \\ \hline 844\end{array} \quad \begin{array}{r}5675 \\ +\quad 786 \\ 5000 \\ 1300 \\ 15461\end{array}\right\}$ add mentally from the top,

		$\begin{array}{r} 5675 \\ +786 \\ \hline 150 \\ 1300 \\ 5000 \\ \hline 6461 \end{array}$	This method helps children understand what is happening when we introduce 'carrying' figures
Compensation (add too	uch then adjust)		
$\begin{array}{r} 776 \\ +288 \end{array}$	$\begin{array}{r} 7.76 \mathrm{~cm} \\ +\quad 2.88 \mathrm{~cm} \end{array}$	extend to	decimals
1076 (776 + 300)	10.76 cm	£56.75	
- 12	-0.12 cm	+£ 7.86	
1064	10.64 cm	0.11	
		1.50	
		13.00	
		50.00	
		£64.61	

Subtraction

Counting up

Standard Written Methods

Addition

Using 'carrying'

679
$+\quad 465$
1144
11

Subtraction

Decomposition
Progression from expanded method to compact method should not be rushed.

$$
\begin{array}{r}
643 \\
-\quad 87
\end{array}
$$

$$
\begin{array}{r}
600+40+3 \\
-\quad 80+7 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& 500+130+13 \text { adjust from } \mathrm{H} \text { to } \mathrm{T} 533 \\
& -\frac{80+7}{500+50+6}=556 \quad \frac{-87}{556}
\end{aligned}
$$

$$
\begin{aligned}
& 600+30+13 \text { adjust from } T \text { to } U 633 \\
& -80+7 \longrightarrow-87
\end{aligned}
$$

Mental Calculation Strategies (x and \div)

- Use doubling or halving, starting from known facts.

Double $76=140+12=152$
Half of $486=200+40+3=243$

Double a number ending in 5 and halve the other number
$18 \times 5=9 \times 10=90$
$26 \times 5=13 \times 10=130$
$37 \times 5=18.5 \times 10=185$ or \ldots
$18 \times 5=180 \div 2=90$

Halve an even number in a calculation then double the answer

$$
18 \times 51=9 \times 51 \times 2
$$

$$
=459 \times 2
$$

$$
=918
$$

Multiply by 50 by multiplying by 100 then halving

$$
47 \times 50=4700 \div 2
$$

$$
=2350
$$

Work out the 16 times table using Knowledge of 8 times table $6 \times 16=(6 \times 8) \times 2$

Work out mentally calculations such as:
$23 \times 25 \quad 10 \times 25=250$

$$
20 \times 25=500
$$

$$
3 \times 25=75
$$

$23 \times 25=575$
Explain how to find sixths by halving thirds, quarters by halving eighths etc.
$1 / 8$ of 400 is 50
$1 / 4$ of 400 is 100 half of this is 50

- Use factors

$$
\begin{aligned}
7 \times 24 & =7 \times 2 \times 3 \times 4 \\
& =14 \times 3 \times 4 \\
& =42 \times 4 \\
& =168
\end{aligned}
$$

- Use closely related facts (e.g. $8 \times 12=80+16=96$ multiply by 19 or 21 by multiplying by 20 and adjusting; develop the $x 12$ table from the $x 10$ and $x 2$ tables

$$
\begin{aligned}
16 \times 19 & =(16 \times 20)-16 \\
& =320-16 \\
& =304 \\
16 \times 21 & =(16 \times 20)+16 \\
& =320+16 \\
& =336
\end{aligned}
$$

- Partition

$$
\begin{aligned}
86 \times 6 & =(80 \times 6)+(6 \times 6) \\
& =480+36 \\
& =516
\end{aligned}
$$

- Use the relationship between multiplication and division
- Use known facts and place value To multiply and divide mentally

Divide a four-digit multiple of 100 by 1000, 100 or 10 $7400 \div 100 \quad 8700 \div 1000$
Answer questions such as:
Find one hundredth of 4500
Find one thousandth of 7600
Find one tenth of 9300
$? \div 100=63$
$4500 \div ?=4.5$
multiply a two-digit multiple of 10 or a three-digit multiple of 100 by a singledigit number
$600 \times 7 \quad 90 \times 8$
$900 \times 10=? \quad 60 \times ?=600$
$36 \times 3=108 \ldots$.therefore
$108 \div 3=36 \quad 108 \div 36=3$
$12 \times 8=96 \ldots$ therefore
$1 / 8$ of 96 is 12
$1 / 12$ of 96 is 8

Multiply a two-digit multiple of 10 by a three-digit multiple of 100
$40 \times 300 \quad 60 \times 700$
$50 \times ?=40000$
? $\times 300=21000$

Double any multiple of 5 up to 500
$155 \times 2=$? $1015 \times 2=$?
Halve any three-digit multiple of 10
$240 \div 2=$? $760 \div 2=$?
$330 \times 1 / 2=$? $\quad \times 1 / 2=420$
Multiply a two-digit whole number by any single-digit number, crossing the tens boundary
28×3
18×4
$37 \times 9=$? $56 \times ?=168$

Fact webs can be very useful for helping children work out new facts from ones they already know:

$0.3 \times 0.7=0.21$
Pencil and Paper Methods (x and \div)

- Approximate first. Use informa/pencil and paper methods to support, record or explain multiplications and divisions.
Extend written methods to:
short multiplication of HTU or TU by U :
long multiplication of TU by TU:
short division of HTU by U (with whole number remainder).

Informal Written Methods

Multiplication

Grid Method (HTU $\times U$ and $T U \times T U$)
437×6 is approximately $400 \times 7=2800$

*Pupils who are finding it difficult to recall facts from $\times 6$ table can still access this calculation by partitioning the 6 into two easier numbers i.e. 4 and 6 , or 5 and 1:
$\left.\begin{array}{l}x \\ 2 \\ 4 \\ \left.\begin{array}{|l|l|l|}\hline 800 & 30 & 7 \\ \hline 1600 & 60 & 14 \\ \hline 120 & 28 & \\ \hline\end{array}\right\}=874 \\ \hline\end{array}\right\}=2622$
68×37 is approximately $70 \times 40=2800$

Division

Using multiples of the divisor

$$
\begin{aligned}
& 344 \div 6 \text { is between } 300 \div 6=50 \text { and } 360 \div 6=60 \\
& 344 \div 6 \quad \begin{array}{l}
344 \\
\frac{-\quad 60}{284}(10 \times 6) \\
\frac{-120}{164}(20 \times 6) \\
\frac{-120}{44}(20 \times 6) \\
\frac{-42}{2}(7 \times 6)
\end{array}
\end{aligned}
$$

Answer: 57 remainder 2

Standard Written Methods

Multiplication

Partitioning
427×8 is approximately $400 \times 9=3600$

Long multiplication: TU \times TU
63×46 is approximately $60 \times 50=3000$

63 $\times \quad 46$ $2520(63 \times 40)$ $378(63 \times 6)$	extend to simple decimals
2898	

5.7×7 is approximately $6 \times 7=42$

Division

Short division
$347 \div 7$ is approximately $350 \div 7=50$
7) $\longdiv { 3 4 7 }$

-280
67

63
$-\quad 9 \times 7$
Answer: 49 R 4
$\begin{array}{r}-280 \\ 67\end{array} 40 \times 7$

Year Six

Mental Calculation Strategies (+ and -)

- Consolidate all strategies from previous year, including: find a difference by counting up;

Work out mentally by counting up from the smaller to the larger number:
add or subtract the nearest Multiple $3+30+100+4000=4133$ of 10,100 or 100 then adjust; use the relationship between addition and subtraction;

Work out mentally;
add several numbers
$317+289=606$
double 300 plus $17-11$

Add/subtract 0.9, 1.9, 2.9, 1.1, etc. by adding or subtracting nearest whole number then adjusting:

$$
\text { a. }+7.8=12-0.1=11.9
$$

$5.6+8.9=15-0.5=14.5$ $10.6-3.7=6.6+0.3=6.9$
$14.2-6.8=7.2+0.2=7.4$

Use $7705-2213=5492$ to work out: 10

7705-5494
$7705-1213$

Work mentally to complete questions like:
$53+?+38=115$
$77+64+96=$?

Work out mentally one fact such as $2.37+4.55$ or $8091-340$, and then state three related facts:$2.37+4.55=6.92$ therefore \ldots
$6.92-4.55=2.37$
$6.92-2.37=4.55$
$4.55+2.37=6.92$

Add mentally three or more multiples of

Add sets of numbers such as:
$64+67+68+62$ recognising that this is equivalent to $(60 \times 4)+21=261$

- Use known number facts and place value to consolidate mental addition/subtraction

Add or subtract four-digit multiples of 100
$6400+8900 \quad 5300-2600$
$4500-2100=i$ $3400+5600=i$

Add or subtract a pair of decimal fractions each less than 1 and with up to two decimal places
$0.07+0.34 \quad 0.8+0.73$
$0.89+1.29=i$
$0.67-0.09=i$
$0.56-0.17=i$

Pencil and Paper Methods (+ and -)

- Use informal pencil and paper methods to support, record or explain additions and subtractions.
Extend written methods to column addition and subtraction of numbers involving decimals

Informal Written Methods

Addition - ThHTU + ThHTU, then numbers with any number of digits
Adding the most significant digits first
5687
+1334
6000
900
110

11 \begin{tabular}{r}
6885

+5538

\hline $\mathbf{7 0 2 1}$

extend to

\end{tabular}

Compensation

6775	
+3688	
$10775(6775+4000)$	34.67 -31 10463

Subtraction - ThHTU - ThHTU, then with any number of digits

Addition

Using 'carrying'

5687		
+1334		
$\mathbf{7 0 2 1}$	6885	45735
111	+5538	1335
	12423	1264
	411	48761
		112

Extend to decimals:-

$128.17+36.08$
128. 17
128.188
$+\quad 36.025$

11

Subtraction

Decomposition
$\begin{array}{r}513161 \\ 6475 \\ 2586 \\ \hline 3889\end{array}$
$3 \begin{array}{r}14.101 \\ 4 \\ 45.14 \\ -\quad 8.27 \\ \hline 336.87\end{array}$

Mental Calculation Strategies (x and \div)

- Use related facts and doubling or halving. For example: double or halve the most significant digit first; to multiply by 25 , multiply by 100 , then divide by 4 ; double one number and halve the other; find the $\times 24$ table by doubling the $\times 6$ table twice

Use related facts and doubling/halving Double $237=400+60+14=474$ Half of $876=400+35+3=478$

Double a number ending in 5 and halve the other number:
16×15

$$
8 \times 30=240
$$

Halve/double one number in a calculation, then double/halve the answer:

$$
\begin{aligned}
16 \times 15 & =(8 \times 15) \times 2 \\
& =120 \times 2 \\
& =240
\end{aligned}
$$

To multiply by 25 , multiply by 100 , then divide by 4 :
$34 \times 25=3400 \div 4$

$$
=850
$$

Use combinations of facts to work out Other multiples:

$$
\begin{aligned}
1 \times 43 & =43 \\
2 \times 43 & =86 \\
4 \times 43 & =172 \\
8 \times 43 & =344 \\
16 \times 43 & =688
\end{aligned}
$$

Explain how to find sixths and twelfths by halving thirds, or twentieths by halving tenths:
one sixth of 93 is one half of 31
$=15.5$
one twelfth of 93 is therefore 7.75

- Use closely related facts: for example, multiply by 49 or 51 by multiplying by 50 then adjusting.

Develop the $\times 17$ table by adding facts from the $\times 10$ and $\times 7$ tables

$$
\begin{aligned}
33 \times 43 & =(688 \times 2)+43 \\
& =1376+43 \\
& =1419
\end{aligned}
$$

Use factors, for example:

$$
\begin{aligned}
43 \times 16 & =43 \times 4 \times 2 \times 2 \\
& =172 \times 2 \times 2 \\
& =344 \times 2 \\
& =688
\end{aligned}
$$

$23 \times 51=1150+23$

$$
=1173
$$

$17 \times 49=850-17$
$=833$

$$
\begin{aligned}
4 \times 17 & =(4 \times 10)+(4 \times 7) \\
& =40+28 \\
& =68
\end{aligned}
$$

- Partition

$$
\begin{aligned}
96 \times 7 & =630+42 \\
& =672 \\
84 \times 14 & =840+336 \\
& =1176 \\
6.7 \times 6 & =(6 \times 6)+(0.7 \times 6) \\
& =36+4.2 \text { leading to } \ldots \\
6.7 \times 6 & =36+4.2 \\
& =40.2
\end{aligned}
$$

- Use the relationship between multiplication and division

Continue to recognise that
knowing one calculation means
you know another three:
$6.7 \times 6=40.2$ therefore....
$6 \times 6.7=40.2$
$40.2 \div 6=6.7$
$40.2 \div 6.7=6$

Recognise that if:
$4 \times 80=320$ then $1 / 4$ of $320=80$ and $1 / 8$ of $320=40$

Answer oral questions such as:
If $1.6 \times 1.2=1.92$,
What is $1.92 \div 1.6 ?$

Pencil and Paper Methods (x and \div)

- Approximate first. Use informal pencil and paper methods to support, record or explain multiplications and divisions.

Extend written methods to:

multiplication of ThHTU $\times U$ (short multiplication);
short multiplication of numbers involving decimals; long multiplication of a three-digit by a two-digit whole number: short division of TU or HTU by U (mixed number answer); division of HTU by TU (long division, whole number answer); short division of numbers involving decimals.

Informal Written Methods

Multiplication

Approximate first

Grid method (ThHTU $\times U$ and HTU \times TU)
3578×7 is approximately $3500 \times 7=24500$

x	3000	500	70	8	
	21000	3500	490	56	= 25046

456×37 is approximately $450 \times 40=18000$

x 0	400	50	6	
	12000	1500	180	13680
7	2800	350	42	$+\frac{3192}{16872}$

6.93×6 is approximately $7 \times 6=42$

Division

Approximate first.

Using multiples of the divisor - HTU \div TU
$867 \div 24$ is approximately $900 \div 25=36$

$$
\begin{aligned}
& 867 \div 24 \\
& 867 \longrightarrow 867 \\
& \begin{array}{ll}
-240 \\
-227 \\
-240 \\
\hline 387 & (10 \times 24)
\end{array} \\
& -240(10 \times 24) \\
& -\frac{144}{3}(6 \times 24) \\
& \text { Answer: } 363 / 24 \longrightarrow 361 / 8
\end{aligned}
$$

Standard Written Methods

Multiplication

Partitioning
Short multiplication: ThHTU $\times \mathrm{U}$
3578×7 is approximately $3500 \times 7=24500$

3578	leading to	3578
¢ 7		$\times \quad 7$
21000 (3000 x 7)		25046
3500 (500 x 7)		455
490 (70x7)		
$56(8 \times 7)$		
25046		

Long multiplication: HTU \times TU
473×26 is approximately $450 \times 30=13500 \quad 518 \times 42$ is approximately 500×40 $=20000$

473

$\mathrm{x} \quad 26$

$9460(473 \times 20)$
2400 (400×6)
420 (70×6)
$18(3 \times 6)$

518
512
$\times \quad 4$
20720 (518×40)
1036 (518×2)
21756

12298

Extend to decimals with up to two decimal places

6.87×6 is approximately $7 \times 6=42$
5.34×48 is approximately 5.34×50 $=267$
6. 87×6
$6.00 \times 6=36.00$
$0.80 \times 6=4.80$
$0.07 \times 6=\frac{0.42}{41.22}$
5. $00 \times 40=200.00$
5. $00 \times 8=40.00$
$0.30 \times 40=12.00$
$0.30 \times 8=2.40$
$0.04 \times 40=1.60$
$0.04 \times 8=\frac{0.32}{256.32}$

Division

Long division HTU $\div T U$
$896 \div 24$ is approximately $900 \div 25=36$

24) 896		24) 896	
$\begin{array}{r}-720 \\ \hline 176\end{array}$	$(30 \times 24) \xrightarrow{\text { extend }}$ to decimals	$\begin{array}{r}\text { - } 720 \\ \hline 176\end{array}$	(30 $\times 24$)
176		176	
-168	(7×24)	- 168	(7×24)
8		8. 0	
		7.2	(0.3×24)
Answer: $378 / 24 \longrightarrow 371 / 3$		0.80	
		0.72	(0.03×24)

Answer: 37.33

Fact Webs can help children derive new number facts from ones they already know and are particularly useful as preparation for more complex multiplication and division. Starting with a simple fact from any times table, children use doubling/halving, multiplying by 10, 100 etc., to generate new facts.
$70 \times 3=210$

